Page 6-A

Sumter County Record-Journal

Thursday, May 2, 2024

2024 City of Livingston Annual Water Quality Report for the period of January - December 2023

2024 Annual Water Quality Report (Testing Performed January - Dece 2023)

CITY OF LIVINGSTON UTILITIES BOARD

PWSID AL0001220 Post Office Box W Livingston, AL 35470 Phone 205-652-2401 or 2505 Fax 205-652-9772

We are pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. We are committed to providing a quality drinking water that meets or exceeds all state and federal drinking water standards. The United States Environmental Protection Agency (EPA) prescribes regulations that limit the amount of certain contaminants in water provided by public water systems to ensure that the water is each to drink. that tap water is safe to drink.

Water Source	Two (2) groundwater wells producing from the Coker aguifer
Additional Connections	Sell water to Sumter County Water Authority
Water Treatment	Chlorination and corrosion control
Storage Capacity	Five (5) tanks with a total capacity of 1,150,000 gallons
Number of Customers	Approximately 1500
	Clata Decad
	Clete Beard
	Hiram Patrenos
Board Members	Thomas M. Tartt, III
	Mack Rutherford

As you can see by the table below, our system had no MCL violations. We have learned through our monitoring and testing that some constituents have been detected. We are pleased to report that our drinking water meets federal and state requirements. This report shows our water quality and what it means.

	Violation	Lough	Unit			18-1-0
		Level				Likely Source
Contaminants	Y/N	Detected	Msmt	MCLG	MCL	of Contamination
Alpha emitters	NO	5.4	PCi/I	0	15	Erosion of natural deposits
Combined radium	NO	3.2	PCi/I	0	5	Erosion of natural deposits
Barium	NO	0.07-0.12	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Copper (distribution samples)	NO	0.310 * 0 > AL	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Fluoride	NO	0.45-0.58	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from factories
Lead (distribution samples)	NO	0.0017 * 0 > AL	ppm	0.015	AL=0.015	Corrosion of household plumbing systems, erosion of natural deposits
Secondary Contaminants						
Chloride	NO	ND-214	ppm	n/a	250	Naturally industrial; factory discharge; agricultural runoff
Hardness	NO	29.5-40.6	ppm	n/a	n/a	Naturally occurring; treatment with water additives
Iron	NO	0.10-0.19	ppm	n/a	0.3	Naturally industrial; factory discharge; agricultural runoff
Manganese	NO	0.01-0.02	ppm	n/a	0.05	Erosion of natural deposits; leaching from pipes
рН	NO	7.1-7.7	S.U.	n/a	n/a	Naturally occurring; treatment with water additives
Sodium	NO	133-166	ppm	n/a	n/a	Naturally occurring in the environment
Total Dissolved Solids	NO	405-493	ppm	n/a	500	Naturally industrial; factory discharge; agricultural runoff

	l Iola Williams		

Source Water Assessment

In compliance with the Alabama Department of Environmental Management (ADEM), Livingston Utilities Board has developed a Source Water Assessment plan that will assist in protecting our water sources. This plan provides additional information such as potential sources of contamination. It includes a susceptibility analysis, which classifies potential contaminants as high, moderate, or non-susceptible to contaminating the water source. The report is available in our office for review during contaminations are such as a susceptible to contaminating the water source. The report is available in our office for review during normal business hours

Livingston Utilities Board routinely completes a water storage facility inspection plan and utilizes a Bacteriological Monitoring Plan. The chlorine residual is monitored closely within the distribution system. We have adopted a Cross-Connection Control Program for the purpose of detecting and preventing a danger to public health from cross-connection

Please help us make these efforts worthwhile by protecting our source water. Carefully follow instructions on pesticides and herbicides you use for your lawn and garden, and properly dispose of household chemicals, paints and waste oil.

Information about Lead

Elevated levels of lead can cause serious health problems, especially for pregnant women, infants, and young children. However, lead is rarely found in source water. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before several hours. using water for drinking or cooking.

Jse only water from the cold-water tap for drinking, cooking, and especially for making baby formula. Most of the lead in is ousehold water usually comes from the plumbing in your house, not from the local water supply, and hot water is more ikely to cause lead to leach from plumbing materials. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at <u>www.epa.gov/safewater</u>.

General Information

All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. MCL's, defined in a List of Definitions in this report, are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minera and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water

run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. • Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water run-off, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

Questions?

If you have any questions about this report or concerning your water utility, please contact Walt Ezell. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the fourth Monday of each month at City Hall at 11:00 a.m.

More information about contaminants to drinking water and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (1-800-426-4791).

Monitoring Schedule and Results

Livingston Utilities Board routinely monitors for constituents in your drinking water according to Federal and State laws. This report contains results from the most recent monitoring which was performed in accordance with the regulatory schedule

Constituent Monitored	Date Monitored
Inorganic Contaminants	2022
Lead/Copper	2023
Microbiological Contaminants	current
Nitrates	2023
Radioactive Contaminants	2019
Synthetic Organic Contaminants (including pesticides and herbicides)	2023
Volatile Organic Contaminants	2023
Disinfection By-products	2023
PFAS	2020

PFAS Contaminants

The U.S. Environmental Protection Agency (EPA) has not established national primary drinking water regulations for PFAS substances. Below is a list of PFAS contaminants for which our system monitored in 2020 and the results of that monitoring. *PFAS was not detected in our drinking water*. For more information on PFAS contaminants, please consult <u>www.epa.gov/pfas</u>

Contaminant	Unit Msmt	Level Detected	Contaminant	Unit Msmt	Level Detected
11CI-PF3OUdS (11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid)	ppb	ND	Perfluoroheptanoic acid	ppb	ND
9CI-PF3ONS (9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid)	ppb	ND	Perfluorchexanesulfonic acid	ppb	ND
ADONA (4,8-dioxa-3H-perfluorononanoic acid)	ppb	ND	Perfluorononanoic acid	ppb	ND
HFPO-DA (Hexafluoropropylene oxide dimer acidA)	ppb	ND	Perfluorooctanesulfonic acid	ppb	ND
NEtFOSAA (N-ethylperfluorooctanesulfonamidoacetic acid)	ppb	ND	Perfluorooctanoic acid	ppb	ND
NMeFOSAA (N-methylperfluorooctanesulfonamidoacetic acid0	ppb	ND	Perfluorotetradecanoic acid	ppb	ND
Perfluorobutanesulfonic acid	ppb	ND	Perfluorotridecanoic acid	ppb	ND
Perfluorodecanoic acid	ppb	ND	Perfluoroundecanoic acid	ppb	ND
Perfluorohexanoic acid	ppb	ND	Total PFAS	ppb	ND
Perfluorododecanoic acid	ppb	ND			

DEFINITIONS

Action Level- the concentration of a contaminant that, if exceeded, triggers treatment or other requirements which a water system must follow.

Coliform Absent (ca)- Laboratory analysis indicates that the contaminant is not present.

Cryptosporidium- a microscopic parasite that can cause disease, mainly diarrhea, if swallowed, Disinfection byproducts (DBPs) are formed when disinfectants used in water treatment plants react with bromide and/or natural organic matter (i.e., decaying vegetation) present in the source water. Different disinfectants produce different types or amounts of disinfection byproducts. Disinfection bypro which regulations have been established trihalomethanes (TTHM), haloacetic acids

bromate, and chlorite. Initial Distribution System Evaluation (IDSE)-a time study conducted by water systems to iden distribution system locations with high concentri of trihalomethanes (THMs) and haloacetic acid (HAAs).

Locational Running Annual Average (LRAA)-ve average of all the DPB results at each specific sampling site in the distribution system. The hig distribution site LRAA is reported in the Table o

Detected Contaminants Maximum Contaminants. The Maximum Allowed (MCL) is the highest la

contaminant that is allowed in drinking water. are set as close to the MCLGs as feasible u best available treatment technology. Maximum Contaminant Level Goal-(ma language) The Goal (MCLG) is the leve contaminant in drinking water below which the known or expected risk to health. MCLGs allo

margin of safety. Maximum Residual Disinfectant Level (MR highest level of a disinfectant allowed in drinking Millirems per year (mrem/yr)-measure of absorbed by the body. Nephelometric Turbidity Unit (NTU)-a measu

clarity of water. Turbidity in excess of 5 NTI noticeable to the average person. Non-Detects (ND)- laboratory analysis indica

the constituent is not present above detection lab equipment.

Not Reported (NR)-laboratory analysis Secondary Contaminants, not reported by system. EPA recommends secondary stand water systems but does not require systems to Parts per billion (ppb) or Micrograms per liter () part per billion corresponds to one minute

years, or a single penny in \$10,000,000. Parts per million (ppm) or Milligrams per liter (m part per million corresponds to one minute in tw or a single penny in \$10,000.

Parts per quadrillion (ppq) or Picograms ((picograms/))-one part per quadrillion corresp one minute in 2,000,000,000 years, or a single

in \$10.000.000.000.000. Parts per trillion (ppt) or Nanograms p (nanograms/I)-one part per trillion corresponds minute in 2,000,000 years, or a single p

Picocuries per liter (pCi/L)-picocuries per lite measure of the radioactivity in water.

RAA-Running annual average Standard Units (S.U.)-pH of water measu water's balances of acids and bases and is affi temperature and carbon dioxide gas. Water v than 6.5 could be acidic, soft, and corrosiv greater than 8.5 could indicate that the water is Treatment Technique (TT)- a required intended to reduce the level of a contam drinking water.

Variances & Exemptions (V&E)-State permission not to meet an MCL or a tr technique under certain conditions.

3-Hydroxycarbofuran

ppo	<u> </u>			I	
The following table is Unregulated Contamin. contaminants were not Table of Detected Drink	ants fo detec	or which our w ted in your drin	vater system routinely king water unless they	monitors	These
STANDARD LIST	OF P	RIMARY DRI	NKING WATER CO	NTAMIN	ANTS
Contaminant	MCL	Unit of Msmt	Contaminant	MCL	Unit of Msmt
Bacteriological Contaminants			trans-1,2-Dichloroethylene	100	ppb
Total Coliform Bacteria	<5%	present or absent	Dichloromethane	5	ppb
Fecal Coliform and E. coli	0	present or absent	1,2-Dichloropropane	5	ppb
Fecal Indicators	0	present or absent	Di (2-ethylhexyl)adipate	400	ppb
Turbidity	Π	NTU	Di (2-ethylhexyl)phthalate	6	ppb

nounts of	Turbidity	Π	NTU	Di (2-ethylhexyl)phthalate	6	ppb
ducts for d include	Cryptosporidium	Π	catc.organisms/liter	Dinoseb	7	ppb
(HAA5),	Radiological Contaminants			Dioxin [2,3,7,8-TCDD]	30	ppq
, ,	Beta/photon emitters	4	mrem/yr	Diquat	20	ppb
one-	Alpha emitters	15	pCi/l	Endothall	100	ppb
ntify trations	Combined radium	5	pCi/l	Endrin	2	ppb
ds	Uranium	30	pCi/l	Epichlorohydrin	Π	π
••	Inorganic Chemicals			Ethylbenzene	700	ppb
early	Antimony	6	ррь	Ethylene dibromide	50	ppt
; ighest	Arsenic	10	ppb	Glyphosate	700	ppb
of	Asbestos	7	MFL	Heptachlor	400	ppt
	Barium	2	ppm	Heptachlor epoxide	200	ppt
anguage)	Beryllium	4	ррь	Hexachlorobenzene	1	ppb
level of a ar. MCLs	Cadmium	5	ppb	Hexachlorocyclopentadiene	50	ppb
using the	Chromium	100	ррб	Lindane	200	ppt
	Copper	AL=1.3	ppm	Methoxychlor	40	ppb
nandatory	Cyanide	200	ppb	Oxamyl [Vydate]	200	ppb
vel of a nere is no	Fluoride	4	ррт	Polychlorinated biphenyls	0.5	ppb
llow for a	Lead	AL=15	ppb	Pentachlorophenol	1	ppb
	Mercury	2	ppb	Picloram	500	ppb
IRDL)-the	Nitrate	10	ppm	Simazine	4	ppb
ng water	Nitrite	1	ppm	Styrene	100	ppb
radiation	Selenium	.05	ppm	Tetrachloroethylene	5	ppb
re of the	Thalium	.002	ppm	Toluene	1	ppm
U is just	Organic Contaminants			Toxaphene	3	ppb
	2.4-0	70	ppb	2,4,5-TP(Silvex)	50	ppb
ates that	Acrylamide	Π	π	1.2.4-Trichlorobenzene	.07	ppm
	Alachlor	2	ppb	1,1,1-Trichloroethane	200	ppb
usually	Benzene	5	ppb	1.1.2-Trichloroethane	5	ppb
y water	Benzo(a)pyrene [PAHs]	200	ppt	Trichloroethylene	5	ppb
dards to comply.	Carbofuran	40	ppb	Vinyl Chloride	2	ppb
ug/i)-one	Carbon tetrachloride	5	ppb	Xvienes	10	ppm
in 2,000	Chlordane	2	рро	Disinfectants & Disinfection B		ppm
	Chlorobenzene	100	ppb	Chlorine	4	ppm
ng/i)-one wo years	Dalapon	200	ppb	Chlorine Dioxide	800	ppb
wu years	Dibromochloropropane	200	ppt	Chloramines	4	ppm
per liter	o-Dichlorobenzene	600	ppt	Bromate	10	ppb
ponds to	p-Dichlorobenzene	75	ppb	Chlorite	1	
le penny	1.2-Dichloroethane	5	ppb	HAA5 (Total haloacetic acids)	60	ppm
per liter	1,1-Dichloroethylene	7		TTHM [Total trihalomethanes]	80	ppb
is to one	cis-1,2-Dichloroethylene	70	ppb	T Trum [Total dillatomedianes]	00	ррь
penny in	us-1,2-Dicitorioleanyiette	10	ppb			
then to a	t 1 Dishlama	A1	UNREGULATED CO	Chloroform	Matalenti	
liter is a	1,1 - Dichloropropene				Metolachlor	
	1,1,1,2-Tetrachloroethane			Chloromethane	Metribuzin	
ures the	1,1,2,2-Tetrachloroethane		Sulfoxide	Dibromochloromethane	N - Butylbenzene	
fected by	1,1-Dichloroethane	Aldrin		Dibromomethane	Naphthalene	
with less /e.ApH	1,2,3 - Trichlorobenzene	Bromob		Dicamba	N-Propyibenzene	
s hard.	1,2,3 - Trichloropropane		hioromethane	Dichlorodifluoromethane	O-Chlorotoluene	
process	1,2,4 - Trimethylbenzene	-	ichloromethane	Dieldrin	P-Chlorotolu	
ninant in	1,3 - Dichloropropane	Bromoto		Hexachlorobutadiene	P-Isopropyitoluene	
or 504	1,3 - Dichloropropene	Bromon		Isoprpyibenzene	Propachior	
or EPA treatment	1,3,5 - Trimethylbenzene	Butachte		M-Dichlorobenzene	Sec - Butylbe	
acauniont	2,2 - Dichloropropane	Carbary	1	Methomyl	Tert - Butylb	enzene

MTBE

Trichlorfluoromethane

Chloroethane